Neglected Respiratory Diseases in the Asia–Pacific

Parasites and the Lungs

Vicente Y. Belizario, Jr., MD, MTM&H
University of the Philippines Manila
Neglected Tropical Diseases (NTDs)
Infectious Diseases of Poverty

- Group of parasitic and bacterial diseases that cause significant impairment of physical and cognitive development (CDC, 2011)
- Has plagued humanity for centuries
- Affect an estimated two billion people in tropical and subtropical countries (WHO, 2013)
- All low-income countries are affected by at least five NTDs (CDC, 2011)
- Related to unsafe water, poor sanitation, and impoverished living conditions
The 17 Neglected Tropical Diseases

- **Virus**
 - Dengue/Severe dengue
 - Rabies

- **Protozoa**
 - Chagas disease
 - Human African trypanosomiasis
 - Leishmaniases

- **Helminth**
 - Cysticercosis/Taeniasis
 - Dracunculiasis
 - Echinococcosis
 - Foodborne trematodiases
 - Lymphatic filariasis
 - Onchocerciasis (river blindness)
 - Schistosomiasis
 - Soil-transmitted helminthiases

- **Bacteria**
 - Buruli ulcer
 - Leprosy (Hansen disease)
 - Trachoma
 - Yaws

(WHO, 2014)
Global NTD Burden Map

(United to Combated NTD, 2014)
Neglected Tropical Diseases

- In Southeast Asia and Western Pacific:
 - Soil–transmitted helminthiases (STH)
 - Schistosomiasis (SCH)
 - Lymphatic filariasis (LF)
 - Food–borne trematodiases (FBT)

- Morbidities include:
 - Anemia, malnutrition, poor mental and physical development (STH and SCH)
 - Chronic liver and pulmonary disease (SCH)
 - Physical disfigurement and disability (LF)
 - Diarrhea, anorexia, weight loss, peptic ulcer disease–like symptoms and chronic cough (FBT)
Parasites and the Lungs

- Not uncommon in tropical countries especially in Southeast Asia
- Manner of presentation
 - Focal lesions
 - cystic lung lesions
 - coin lesions
 - consolidation/pleural effusion
 - Diffuse lung disease
 - transient pulmonary infiltrates
 - alveolar/interstitial lung changes

(Kunst et al., 2010)
Tropical Parasitic Lung Diseases

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Parasites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nematodes</td>
<td></td>
</tr>
<tr>
<td>Pulmonary ascariasis</td>
<td>Ascaris lumbricoides</td>
</tr>
<tr>
<td>Pulmonary ancylostomiasis</td>
<td>Ancylostoma duodenale</td>
</tr>
<tr>
<td></td>
<td>Necator americanus</td>
</tr>
<tr>
<td>Pulmonary strongyloidiasi</td>
<td>Strongyloides stercoralis</td>
</tr>
<tr>
<td>Tropical pulmonary eosinophilia</td>
<td>Wuchereria bancrofti</td>
</tr>
<tr>
<td>Trematodes</td>
<td></td>
</tr>
<tr>
<td>Pulmonary schistosomiasis</td>
<td>Schistosoma haematobium</td>
</tr>
<tr>
<td></td>
<td>Schistosoma japonicum</td>
</tr>
<tr>
<td>Pulmonary paragonimiasis</td>
<td>Paragonimus westermani</td>
</tr>
<tr>
<td>Cestodes</td>
<td></td>
</tr>
<tr>
<td>Pulmonary hydatid cyst</td>
<td>Echinococcus granulosus</td>
</tr>
<tr>
<td></td>
<td>Echinococcus multilocularis</td>
</tr>
</tbody>
</table>

(Kunst *et al.*, 2010)
Tropical Parasitic Lung Diseases

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Parasites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td></td>
</tr>
<tr>
<td>Pulmonary amoebiasis</td>
<td>Entamoeba histolytica</td>
</tr>
<tr>
<td>Pulmonary leishmaniasis (ibaba)</td>
<td>Leishmania donovani</td>
</tr>
<tr>
<td>Pulmonary malaria</td>
<td>Plasmodium vivax</td>
</tr>
<tr>
<td></td>
<td>Plasmodium falciparum</td>
</tr>
<tr>
<td></td>
<td>Plasmodium malariae</td>
</tr>
<tr>
<td></td>
<td>Plasmodium ovale</td>
</tr>
<tr>
<td></td>
<td>Plasmodium knowlesi</td>
</tr>
<tr>
<td>Pulmonary toxoplasmosis</td>
<td>Toxoplasma gondii</td>
</tr>
<tr>
<td>Pulmonary babesiosis</td>
<td>Babesia microti</td>
</tr>
</tbody>
</table>

(Kunst et al., 2010)
Loeffler's syndrome

- Hypersensitivity response leading to respiratory symptoms including cough, wheezing, dyspnea, chest pain, fever and hemoptysis
- Characterized by transient pulmonary infiltrates associated with peripheral eosinophilia (Kunst et al., 2010)

Pathophysiology

- Damage to the respiratory epithelium, ciliastasis and mucus production
- Release of platelet activating factor and leukotrienes contributing to bronchospasm
- *Ascaris lumbricoides* and hookworms
- Other parasites such as *Strongyloides stercoralis*
- Can also be caused by nonsteroidal anti-inflammatory drug (NSAID) or infection with fungi (*Aspergillus fumigatus* or *Pneumocystis jirovecii*) (Sharma et al., 2014, NLM, 2013)
Soil transmitted helminthiasis

- **Causative agents**
 - *Ascaris lumbricoides* (round worm)
 - *Ancylostoma duodenale* or *Necator americanus*

- **Transmission**
 - Ingestion of eggs (*Ascaris*) or skin penetration by larvae from soil (hookworms)

- **Lung migration phase**

(CDC, 2011)
Soil transmitted helminthiases

- Major factors for exposure: poor environmental sanitation and poor personal hygiene
- Common worldwide in areas with poor sanitation
- Prevalence of STH in Southeast Asia
 - 59.7% in a rural community in Malaysia (Hakim et al, 2007)
 - 43.7% among PSAC and 44.7 % among SAC in the Philippines based from a sentinel surveillance in 2009 (Belizario et al., 2013)
- Definitive diagnosis: Microscopic examination of stool
STH Treatment

- Albendazole or Mebendazole
- WHO recommends preventive chemotherapy for morbidity control
 - Use of anthelminthic drugs, either alone or in combination, as a public health tool against helminth infections (WHO, 2006)
- Major mass drug administration (MDA) efforts ongoing in developing countries
- In the Philippines, MDA coverage rates generally very low at 15% (WHO, 2012)
Strongyloides

- *Strongyloides stercoralis*
- Infection rates in Southeast Asia:
 - 17.5% in Cambodia
 - 23.7% in Thailand
 - 26.2% in Lao PDR (Schar *et. al*, 2013)
 - 44.7% infection rate in a province in Northern Cambodia (Khieu *et. al*, 2014)
- Skin penetration of filariform larvae > entry to blood vessels > heart and lung migration > migration to alveoli (Kunst *et al*, 2010)
- Autoinfection leading to hyperinfection
- Disseminated strongyloidiasis – case-fatality rates near 90% (CDC, 2013)

Filariform larva of *Strongyloides stercoralis* (CDC, 2012)
Clinical Manifestations:
- Generally asymptomatic (latent phase)
- Mild symptoms during lung migration
- Respiratory symptoms may be non-specific
- Asthma-like symptoms
- In hyperinfection, pulmonary infiltrates are commonly seen on chest radiographs
- Eosinophilia in 75% of the cases
- Definitive diagnosis: demonstration of rhabditiform larvae in stool, sputum or duodenal aspirates
 - (Kunst et. al, 2010)
- Use of culture techniques such as Harada–Mori technique
Strongyloidiasis Treatment

- Ivermectin (first line therapy)
 single dose, 200 µg/kg orally for 1–2 days
- Albendazole (alternative)
 400 mg orally two times a day for 7 days

(CDC, 2013)
Syndrome resulting from hypersensitivity reaction to *Wuchereria bancrofti* and *Brugia malayi*

- Occurs in Southeast Asia, China, India, and Africa
- Slow onset (over several months)
- Respiratory symptoms: cough, dyspnea and wheezing
- Systemic symptoms: fever, malaise and weight loss
- Seen in only <1% of filarial infection

(Kunst *et al.*, 2010, Vijayan, 2008)
Tropical Pulmonary Eosinophilia (TPE)

- **Diagnosis**
 - Demonstration of filarial parasite through microscopy
 - High titres of antifilarial antibodies
 - Peripheral blood eosinophilia
 - Elevated total serum IgE

- **Treatment**
 - Diethylcarbamazine (may be combined with albendazole to improve efficacy)

(Kunst *et al.*, 2010, Vijayan, 2008)
Paragonimiasis

- *Paragonimus westermani*
 Korea, Japan, China, Taiwan, Malaysia, Indonesia, Philippines and India

- *Paragonimus heterotremus*
 Southeast Asia and Southern China
 (WHO, 2014)

- 20 million people with paragonimiasis in Asia (90% of all cases) (Vijayan, 2008)

- 20.9% prevalence in children and 4.1% in adults in Arunachal Pradesh in India (Devi *et al.*, 2007)

- 0.2–11.3% prevalence in Vietnam, majority of whom are children (Doanh *et al.*, 2013)

- 15%–25% prevalence in Zamboanga del Norte and Sorsogon (Belizario *et al.*, 2000, 2007)
Known Endemic Areas for Paragonimiasis

Occidental Mindoro
Oriental Mindoro
Camarines Sur
Sorsogon
Samar
Leyte
Zamboanga del Norte
Compostela Valley
Davao del Norte
Davao Oriental
Cotabato
Basilan

(Cabrera, 1979; Belizario and Malte, 2004)
Paragonimiasis

- Major clinical manifestations:
 - Persistent cough
 - Hemoptysis
 - Chest pain
 - Back Pain
 - Dyspnea
 - Weight loss
 - Anorexia
 - Fever

- Manifestations and X-ray findings mimic pulmonary tuberculosis
 (Singh et al., 1986, 2005, Belizaro et al., 1997; Nagakura et al., 2002; Narain et al., 2004; Tay et al., 2005)

- 30% with TB as co-mobidity
- No significant different between males and females
 (Belizaro et al, 1997)
Paragonimiasis

Diagnosis
- Sputum examination (3% NaOH concentration technique)
- Immunological techniques and PCR not readily available (WHO, 2014)

Treatment:
- Triclabendazole
 20 mg/kg, in two divided doses on the same day
- Praziquantel
 25 mg/kg three times a day for three days

(WHO, 2014)
Schistosomiasis

- *Schistosoma japonicum* in China, Philippines, Indonesia
- *Schistosoma mekongi* in Cambodia, Lao PDR (WHO, 2014)
- Prevalent in Southeast Asia
 - Cambodia: <1%
 - Lao PDR: <1%
 - Philippines: 3%
(Zhou *et al.*, 2010; DOH, 2013)

www.cdc.gov/parasites
Schistosomiasis in the Philippines

- Endemic in 12 regions covering 28 provinces with focal distribution (DOH, 2007; Belizario et al., 2005)

- Prevalence of schistosomiasis in school-age children
 - Negros Occidental – 6.8%
 - Davao del Norte – 3.1%
 - Surigao del Norte – 4.8%
 - Agusan del Sur – 31.8% (5–70%) (Belizario et al., 2007, 2012, 2013)

- Major challenges with lab diagnostics (Belizario et al., 2004)

WHO/DOH Target
Prevalence: <1%
Pulmonary Schistosomiasis

- Schistosomiasis – maybe one of the most common causes of pulmonary hypertension
- Lack of data on disease burden (Butrous et al., 2008, Kolosionek, et al., 2010)
- Acute pulmonary schistosomiasis (Katayama syndrome)
 - Develop three to eight weeks after skin penetration
 - Fever, chills, weight loss, diarrhea, abdominal pain, myalgia, shortness of breath, wheezing, urticaria and dry cough
 - Small pulmonary nodules in CT

(Kunst et al., 2010, Vijayan, 2008)
Pulmonary Schistosomiasis

- Chronic pulmonary schistosomiasis
 - Features of pulmonary hypertension and cor pulmonale
 - Massive hemoptysis
 - Lobar consolidation and collapse (Kunst et. al, 2010, Vijayan, 2008)

- Pulmonary granulomas and fibrosis in S. japonicum infections reported in 80% Schistosoma japonicum egg of autopsied cases of advanced disease in China (Zheng et. al, 1981)

- Only 1 case of cor pulmonale in 65 patients with S. japonicum infections in Philippines (Watt et al, 1986)
Pulmonary Schistosomiasis

- Diagnosis
 - Microscopy
 - Kato Katz Technique
 - Formalin Ether Concentration Technique
 - Immunodiagnostic Tests
 - Circumoval Precipitin Test (COPT)
 - Enzyme–Linked Immunosorbent Assay
 - Rectal imprint
- Treatment: Praziquantel

(Kunst et. al, 2010, Vijayan, 2008)
Summary

- Neglected diseases, infectious diseases of poverty
- Parasitic infections affecting the lungs not uncommon in Southeast Asia
- Pulmonary manifestations coupled with evidence of parasitic infections provide basis for clinical diagnosis
- Treatment will include provision of appropriate anti-parasite drugs
Thank you
References: